Holomorphic Functions of Slow Growth on Nested Covering Spaces of Compact Manifolds

Finnur Lárusson

Abstract. Let Y be an infinite covering space of a projective manifold M in \mathbb{P}^N of dimension $n \geq 2$. Let C be the intersection with M of at most $n-1$ generic hypersurfaces of degree d in \mathbb{P}^N. The preimage X of C in Y is a connected submanifold. Let ϕ be the smoothed distance from a fixed point in Y in a metric pulled up from M. Let $\mathcal{O}_\phi(X)$ be the Hilbert space of holomorphic functions f on X such that $f^2 e^{-\phi}$ is integrable on X, and define $\mathcal{O}_\phi(Y)$ similarly. Our main result is that (under more general hypotheses than described here) the restriction $\mathcal{O}_\phi(Y) \to \mathcal{O}_\phi(X)$ is an isomorphism for d large enough.

This yields new examples of Riemann surfaces and domains of holomorphy in \mathbb{C}^n with corona. We consider the important special case when Y is the unit ball B in \mathbb{C}^n, and show that for d large enough, every bounded holomorphic function on X extends to a unique function in the intersection of all the nontrivial weighted Bergman spaces on B. Finally, assuming that the covering group is arithmetic, we establish three dichotomies concerning the extension of bounded holomorphic and harmonic functions from X to B.

Received by the editors January 22, 1999; revised March 30, 2000.
This work was supported in part by the Natural Sciences and Engineering Research Council of Canada.