Chern Characters of Fourier Modules

Samuel G. Walters

Abstract. Let A_θ denote the rotation algebra—the universal C^*-algebra generated by unitaries U, V satisfying $VU = e^{2\pi i \theta} UV$, where θ is a fixed real number. Let σ denote the Fourier automorphism of A_θ defined by $U \mapsto V$, $V \mapsto U^{-1}$, and let $B_\theta = A_\theta \rtimes_{\sigma} \mathbb{Z}/4\mathbb{Z}$ denote the associated C^*-crossed product. It is shown that there is a canonical inclusion $\mathbb{Z}^9 \hookrightarrow K_0(B_\theta)$ for each θ given by nine canonical modules. The unbounded trace functionals of B_θ (yielding the Chern characters here) are calculated to obtain the cyclic cohomology group of order zero $HC_0(B_\theta)$ when θ is irrational. The Chern characters of the nine modules—and more importantly, the Fourier module—are computed and shown to involve techniques from the theory of Jacobi’s theta functions. Also derived are explicit equations connecting unbounded traces across strong Morita equivalence, which turn out to be non-commutative extensions of certain theta function equations. These results provide the basis for showing that for a dense G_δ set of values of θ one has $K_0(B_\theta) \cong \mathbb{Z}_9^9$ and is generated by the nine classes constructed here.

Received by the editors December 4, 1998; revised October 24, 1999.
Research partly supported by NSERC grant OGP0169928.
AMS subject classification: 46L80, 46L40.
Keywords: C^*-algebras, unbounded traces, Chern characters, irrational rotation algebras, K-groups.