Galois Representations with Non-Surjective Traces

Chantal David, Hershy Kisilevsky and Francesco Pappalardi

Abstract. Let E be an elliptic curve over \mathbb{Q}, and let r be an integer. According to the Lang-Trotter conjecture, the number of primes p such that $a_p(E) = r$ is either finite, or is asymptotic to $C_{E,r} \sqrt{x}/\log x$ where $C_{E,r}$ is a non-zero constant. A typical example of the former is the case of rational ℓ-torsion, where $a_p(E) = r$ is impossible if $r \equiv 1 \pmod{\ell}$. We prove in this paper that, when E has a rational ℓ-isogeny and $\ell \neq 11$, the number of primes p such that $a_p(E) \equiv r \pmod{\ell}$ is finite (for some r modulo ℓ) if and only if E has rational ℓ-torsion over the cyclotomic field $\mathbb{Q}(\zeta_\ell)$. The case $\ell = 11$ is special, and is also treated in the paper. We also classify all those occurrences.