INTEGRAL REPRESENTATION OF p-CLASS GROUPS IN \mathbb{Z}_p-EXTENSIONS AND THE JACOBIAN VARIETY

PEDRO RICARDO LÓPEZ-BAUTISTA AND GABRIEL DANIEL VILLA-SALVADOR

ABSTRACT. For an arbitrary finite Galois p-extension L/K of \mathbb{Z}_p-cyclotomic number fields of CM-type with Galois group $G = \text{Gal}(L/K)$ such that the Iwasawa invariants μ_L, λ_L are zero, we obtain unconditionally and explicitly the Galois module structure of $\mathcal{C}_L(p)$, the minus part of the p-subgroup of the class group of L. For an arbitrary finite Galois p-extension L/K of algebraic function fields of one variable over an algebraically closed field k of characteristic p as its exact field of constants with Galois group $G = \text{Gal}(L/K)$ we obtain unconditionally and explicitly the Galois module structure of the p-torsion part of the Jacobian variety $J_L(p)$ associated to L/k.