KONRAD HEUVERS, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931-1295, USA A third logarithmic functional equation and Pexider generalizations (joint work with Palaniappan Kannappan)

Let $f:] 0, \infty[\rightarrow \mathbb{R}$ be a real valued function on the set of positive reals. Then the functional equations:

$$
\begin{gathered}
f(x+y)-f(x y)=f(1 / x+1 / y) \\
f(x+y)-f(x)-f(x)=f(1 / x+1 / y)
\end{gathered}
$$

and

$$
f(x y)=f(x)+f(y)
$$

are equivalent to each other.
If $f, g, h:] 0, \infty[\rightarrow \mathbb{R}$ are real valued functions on the set of positive reals then

$$
f(x+y)-g(x y)=h(1 / x+1 / y)
$$

is the Pexider generalization of

$$
f(x+y)-f(x y)=f(1 / x+1 / y)
$$

We find the general solution to this Pexider equation.
If $f, g, h, k:] 0, \infty[\rightarrow \mathbb{R}$ are real valued functions on the set of positive reals then

$$
f(x+y)-g(x)-h(y)=k(1 / x+1 / y)
$$

is the Pexider generalization of

$$
f(x+y)-f(x)-f(y)=f(1 / x+1 / y)
$$

We find the twice differentiable solution to this Pexider equation.

