JOHN BAKER, University of Waterloo, 200 University Avenue W., Waterloo, Ontario N2L 3G1 *The Stability of a General Functional Equation*

Suppose that \mathbb{V} is a vector space over \mathbb{Q} , \mathbb{R} or \mathbb{C} , the scalars $\alpha_0, \beta_0, \ldots, \alpha_m, \beta_m$ are such that $\alpha_j \beta_k - \alpha_k \beta_j \neq 0$ whenever $0 \leq j < k \leq m$, \mathbb{B} is a Banach space, $f_k \colon \mathbb{V} \to \mathbb{B}$ for $0 \leq k \leq m$, $\delta \geq 0$ and

$$\left\|\sum_{k=0}^m f_k(\alpha_k x + \beta_k y)\right\| \le \delta \quad \text{for all } x, y \in \mathbb{V}.$$

Then, for each k = 0, 1, ..., m there exists $c_k \in \mathbb{B}$ and a "generalized" polynomial function $p_k \colon \mathbb{V} \to \mathbb{B}$ of "degree" at most m - 1, such that

$$||f_k(x) - c_k - p_k(x)|| \le 2^{m+1}\delta$$
 for all $x \in \mathbb{V}$

and

$$\sum_{k=0}^m p_k(\alpha_k x + \beta_k y) = 0 \quad \text{for all } x, y \in \mathbb{V}.$$

Moreover, if $\mathbb{V} = \mathbb{R}^n$, $\mathbb{B} = \mathbb{R}$ or \mathbb{C} and, for some j, f_j is bounded on a set of positive Lebesgue measure, then every p_k is a genuine polynomial function.