JOHN BAKER, University of Waterloo, 200 University Avenue W., Waterloo, Ontario N2L 3G1 The Stability of a General Functional Equation

Suppose that \mathbb{V} is a vector space over \mathbb{Q}, \mathbb{R} or \mathbb{C}, the scalars $\alpha_{0}, \beta_{0}, \ldots, \alpha_{m}, \beta_{m}$ are such that $\alpha_{j} \beta_{k}-\alpha_{k} \beta_{j} \neq 0$ whenever $0 \leq j<k \leq m, \mathbb{B}$ is a Banach space, $f_{k}: \mathbb{V} \rightarrow \mathbb{B}$ for $0 \leq k \leq m, \delta \geq 0$ and

$$
\left\|\sum_{k=0}^{m} f_{k}\left(\alpha_{k} x+\beta_{k} y\right)\right\| \leq \delta \quad \text { for all } x, y \in \mathbb{V}
$$

Then, for each $k=0,1, \ldots, m$ there exists $c_{k} \in \mathbb{B}$ and a "generalized" polynomial function $p_{k}: \mathbb{V} \rightarrow \mathbb{B}$ of "degree" at most $m-1$, such that

$$
\left\|f_{k}(x)-c_{k}-p_{k}(x)\right\| \leq 2^{m+1} \delta \quad \text { for all } x \in \mathbb{V}
$$

and

$$
\sum_{k=0}^{m} p_{k}\left(\alpha_{k} x+\beta_{k} y\right)=0 \quad \text { for all } x, y \in \mathbb{V}
$$

Moreover, if $\mathbb{V}=\mathbb{R}^{n}, \mathbb{B}=\mathbb{R}$ or \mathbb{C} and, for some j, f_{j} is bounded on a set of positive Lebesgue measure, then every p_{k} is a genuine polynomial function.

