RICK JARDINE, University of Western Ontario

Homotopy theories of diagrams

A pro-object in simplicial sets is a diagram $X : I \to s$ Set with I right filtered. The pro-object X represents a functor hom(X,) with

$$\hom(X,Z) = \varinjlim_{i \in I} \hom(X(i),Z), \text{ for } Z \in s\mathbf{Set}.$$

A map $\phi : X \to Y$ of pro-objects is a map $hom(Y,) \to hom(X,)$. There is a model structure (Edwards-Hastings) on this category for which a map ϕ is a weak equivalence if the map

$$\varinjlim_{j} \operatorname{\mathbf{hom}}(Y(j), Z) \to \varinjlim_{i} \operatorname{\mathbf{hom}}(X(i), Z)$$

(filtered colimits of function complexes) is a weak equivalence for all fibrant Z.

This talk describes a potential generalization of this structure to all small diagrams of simplicial sets, in a "pro-category" that is a Grothendieck construction: the objects are small diagrams $X : I \to s$ Set, and a morphism $\phi : X \to Y$ is a pair (α, f) consisting of a functor $\alpha : J \to I$ and a map of J-diagrams $f : X \cdot \alpha \to Y$, where $Y : J \to s$ Set is another small diagram.