ASKOLD KHOVANSKII, University of Toronto RESULTANT OF LAURANT POLYNOMIALS WHOSE NEWTON POLYHEDRA ARE DEVELOPED

My talk is based on a joint work with Leonid Monin.
A system of n equations in $\left(\mathbb{C}^{*}\right)^{n}$ whose Newton polyhedra are developed (that is, they are in general position relative to each other) in many ways, resembles an equation in one unknown. As in the one-dimensional case, one can explicitly compute: 1) the sum of values of any Laurent polynomial over the roots of the system; 2) the product of all of the roots of the system (regarded as elements in the group $\left(\mathbb{C}^{*}\right)^{n}$). We study the resultant R (defined up to a sign) of an ($n+1$)-tuple of Laurent polynomials P_{1}, \ldots, P_{n+1}, such that for any n-tuple of them, the corresponding Newton polyhedra are developed. One can show that in this case $R= \pm Q_{i} M_{i}$ for any $1 \leq i \leq n$, where Q_{i} is the product of P_{i} over the common zeros of the P_{j}, for $j \neq i$, and M_{i} is a certain monomial in the coefficients of all the Laurent polynomials P_{j} with $j \neq i$. Thus the identity

$$
Q_{i} M_{i}=Q_{j} M_{j}(-1)^{f(i, j)}
$$

for some $f(i, j) \in \mathbb{Z} / 2 \mathbb{Z}$ holds. We find explicit formulas for the monomials M_{i}, M_{j} and for the sign $(-1)^{f}(i, j)$. The identity above make sense by itself (without mentioning the resultant). One can give an explicit algorithm for computing the products Q_{k} (for any $1 \leq k \leq n+1$). Hence we get an explicit algorithm for computing the resultant R.

