JULIA GORDON, University of British Columbia

Uniform in \(p \) bounds for orbital integrals

It is a well-known theorem of Harish-Chandra that the orbital integrals, normalized by the square root of the discriminant, are bounded (for a fixed test function). However, it is not easy to see how this bound behaves if we let the \(p \)-adic field vary (for example, if the group \(G \) is defined over a number field \(F \), and we consider the family of groups \(G_v = G(F_v) \), as \(v \) runs over the set of finite places of \(F \)), and how it varies for a family of test functions. Using a method based on model theory and motivic integration, we prove that for a fixed test function, the bound on orbital integrals can be taken to be a fixed power (depending on \(G \)) of the cardinality of the residue field, and also obtain a uniform bound for the family of generators of the spherical Hecke algebra playing the role of the test functions. This statement has an application to the recent work of S.-W. Shin and N. Templier on counting zeroes of \(L \)-functions. This project is joint work with R. Cluckers and I. Halupczok.