Réunion d'été SMC 2016

Université de l’Alberta, 24 - 27 juin 2016


Communications libres

ROSTAM SABETI, Olivet College
1-variable Descartes' Rule of signs and ideal of symmetric polynomials  [PDF]

Given a sign pattern for the coefficients of an unknown polynomial $p(x)$ in $\mathbb{C}[x]$ of degree $n$ and consider the coefficients as symmetric polynomials in $\mathbb{C}[s_1,\cdots,s_n]$, we prove that at the rational roots of $p(x)$ proposed by Anderson, Jackson and Sitharam the rank of the associated symmetric system is either one or two.


University of Alberta Pacific Institute for the Mathematical Sciences Centre de recherches mathématiques Fields Institute AARMS: Atlantic Association for Research in the Mathematical Sciences Explore Edmonton

© Société mathématique du Canada : http://www.smc.math.ca/