ALEXANDRE RAMBAUD, Université Paris 7, UFR de Mathématiques, 175 rue du Chevaleret, 75013 Paris, France *Quantifier elimination in some non-quasi-analytic classes*

Let \mathcal{F} be a class of real functions, continuous on a compact box B of \mathbb{R}^n and C^n on a finite "regular" partition P_n of the interior of B for all $n \in \mathbb{N}$; let us also suppose that \mathcal{F} is closed by sums, products, compositions, derivations and, in a certain way, by implicit functions.

If \mathcal{F} satisfies a condition of non-degeneration (equivalent to quasi-analycity in the case of quasi-analytic functions), expressed via model theory, we prove that the complete theory of \mathbb{R} equipped with \mathcal{F} admits quantifier elimination and so is o-minimal.

As a consequence, we will give an example of an o-minimal structure on \mathbb{R} which doesn't admit a C^{∞} stratification. (This last result was obtained independently by O. Le Gal and J-P. Rolin via a geometrical proof.)