MARTÍN MANRIQUE, Universidad Nacional Autónoma de México, Ciudad Universitaria, D.F., México Level Hypergraphs

Given a hypergraph $H=(E_x,\ldots,E_m)$, its level-hypergraph L_H is the result of identifying all vertices which belong to exactly the same edges. This new hypergraph has the same edge-structure as the original one, but may have less vertices. The tool makes it possible to emulate known theorems given in terms of order or rank; the new results are stated in terms of edge-structure, and usually apply to different classes of hypergraphs than the original statements, though there are some improvements on known results.

On the other hand, the study of several characteristics of a given hypergraph H is simplified, since many hypergraph invariants are preserved. For example: H is simple if, and only if, L_H is simple; H has repeated edges if, and only if, L_H does too; $\nu(H) = \nu(L_H)$, where $\nu(H)$ is the maximum cardinality of a matching in H; the minimum cardinality of a transversal set, the maximum cardinality of a transversal set not contained properly in other transversal, and the minimum cardinality of a strongly stable set are also equal in both H and L_H . Moreover, H is balanced (respectively totally balanced) if, and only if, L_H is balanced (respectively strongly unimodular), and $\Lambda(H) = \Lambda(L_H)$, $\lambda(H) = \lambda(L_H)$.

References

- [1] B. D. Acharya, unpublished Manuscript, MRI, 1979.
- [2] C. Berge, The Theory of Graphs. Dover Publications, New York, 2001.
- [3] ______, Hypergraphs. Combinatorics of Finite Sets. Elsevier Science Publishers, Amsterdam, 1989.