JUAN JOSÉ MONTELLANO, Universidad Nacional Autonoma de Mexico, Instituto de Matematicas, U.N.A.M., Area de la investigacion cientifica, Circuito Exterior, Ciudad Universitaria Coyoacan, 04510 Mexico D.F., Mexico
Some Turan and anti-Ramsey numbers
Let G be a graph obtained by adding a chord to a cycle, and let $C(G)$ be the set of cycles which are subgraphs of G. Here we study the relation between ex $(n, C(G))$ and $f(n, G)$, where $\operatorname{ex}(n, C(G))$ is the maximum number of edges of a graph on n vertices with no subgraph isomorphic to an element of $C(G)$; and $f(n, G)$ is the minimum integer k such that for every edge-coloring of the complete graph of order n which uses exactly k colors, there is at least one copy of G all whose edges have different colors.
In particular we show that if G is the diamond (C_{4} with a chord), then

$$
\operatorname{ex}\left(n,\left\{C_{3}, C_{4}\right\}\right)+2 \leq f(n, G) \leq \operatorname{ex}\left(n,\left\{C_{3}, C_{4}\right\}\right)+(n+1)
$$

