Consider an open Riemann surface Σ of genus $g > 0$ with $n > 1$ borders, each one homeomorphic to the unit circle. The surface Σ can be described as a compact Riemann surface R of the same genus g, from which n simply-connected domains $\Omega_1, \ldots, \Omega_n$, removed; that is, $\Sigma = R \setminus \cup \text{cl}(\Omega_k)$. Fix conformal maps f_k from the unit disc \mathbb{D} onto $\Omega_k, k = 1, \ldots, n$. We may assume each f_k has a quasiconformal extension to an open neighbourhood of \mathbb{D}. Let $f = (f_1, \ldots, f_n)$.

I will define the Grunsky operator Gr_f corresponding to f (equivalently to Σ) on some Dirichlet spaces when all the boundary curves are quasicircles in R. I will show that the norm of the Grunsky operator is less than or equal to one. This is a generalization of the classical Grunsky inequalities from the planar case to bordered Riemann surfaces described above.

Joint work with E. Schippers and W. Staubach.