There are familiar examples in which a structure \mathcal{A} is coded in a structure \mathcal{B}. In some of these examples the decoding is effective. Harrison-Trainor, Melnikov, R. Miller, and Montalban defined a notion of effective interpretation. In their definition, the tuples from \mathcal{B} that represent elements of \mathcal{A} do not have a fixed arity, and the formulas that define the interpretation are computable infinitary Σ_1. Harrison-Trainor et al. showed that there is an effective interpretation of \mathcal{A} in \mathcal{B} iff there are Turing operators Φ taking copies of \mathcal{B} to copies of \mathcal{A} and Ψ taking isomorphisms between copies of \mathcal{B} to isomorphisms between the corresponding copies of \mathcal{A}. We consider several examples, with the goal of testing whether the notion of effective interpretation captures the idea of effective decoding.