The notion of antichain catching appeared in the Foreman-Magidor-Shelah paper on Martin’s Maximum, and was used extensively in Woodin’s proofs of the presaturation of various stationary tower forcings. For normal ideals I and J, let us say that J catches I (and write $\text{catch}(J, I)$) iff J has sufficiently large support, the J-positive sets project onto the I-positive sets in a certain canonical manner (as ideals), and whenever $G \subset (J^+, \subset)$ is generic then the projection of G is generic for (I^+, \subset). Certain instances of $\text{catch}(J, I)$ are equivalent to saturation of I (namely when J is the conditional club filter relative to I; see Foreman’s chapter in Handbook of Set Theory). But in general the statement:

“there exists a J such that $\text{catch}(J, I)$”

is strictly weaker than saturation of I and strictly stronger than precipitousness of I. I will discuss this result and others from some joint work with Martin Zeman; I will also discuss some joint work with Matteo Viale which made use of related notions.