ALEX ROSA, McMaster University

Triple metamorphosis of twofold triple systems

The concept of a metamorphosis of block designs, due to Lindner, has been dealt with in many papers. Typically, for a subgraph G' of G, each block of a G-design of order n and index λ is modified by deleting the edges of $G \setminus G'$, and then reassembling the totality of deleted edges into G'-blocks, so as to form, together with the modified blocks of the original G-design, a new G'-design of order n and index λ'.

One such instance is the metamorphosis of a simple twofold triple system of order n, TS(n, 2), into a twofold 4-cycle system of order n, 4C(n, 2). The spectrum for TS(n, 2) having a metamorphosis into 4C(n, 2) has previously been shown to be the set $n \equiv 0, 1, 4, 9 \pmod{12}$, $n \geq 9$. Here we extend the concept of metamorphosis to that of a triple metamorphosis of a TS(n, 2) into a 4C(n, 2). We show that the necessary conditions for the existence of a triple metamorphosis of a TS(n, 2) into a 4C(n, 2) are also sufficient, with one exception ($n = 9$) and one possible exception ($n = 12$). (This is joint work with Curt Lindner and Mariusz Meszka.)