GEORGE STYAN, McGill University, Montreal

Philatelic Sudoku Puzzles

We consider sheetlets of postage stamps with \(r \) rows and \(c \) columns featuring \(s \) distinct stamps (we do not require that \(rc/s \) be an integer) and where no particular stamp appears more than once in any single row or column and so the sheetlet defines a “Latin rectangle”. The “philatelic Sudoku puzzle” is to find an \(s \times s \) Latin square in which the Latin rectangle defining the sheetlet is a subregion and some blocking within the subregion is involved as with the popular “regular” \(9 \times 9 \) Sudoku puzzle. We let \(b \) denote the block size and so \(b = 9 \) in regular Sudoku. We identify six philatelic Sudoku puzzles with parameter sets \((r, c, s ; b)\) as follows:

- Abkhazia 2006, marine life, \((8, 3, 12 ; 4)\),
- Hong Kong 2006, musicians, \((6, 3, 6 ; 3)\),
- Pakistan 2005, mushrooms, \((6, 5, 10 ; 5)\),
- USA 1997, musicians, \((5, 4, 8 ; 4)\),
- USA 2005, aircraft, \((5, 4, 10 ; 10)\),
- USA 2007, flowers, \((2, 10, 10 ; 2)\).

For each puzzle we present the solution and some interesting properties of the associated matrices.

This talk is based on Section 6 of the invited paper (with Ka Lok Chu & Simo Puntanen) entitled “Some comments on philatelic Latin squares from Pakistan”, to be published in the Special Jubilee Issue of the Pakistan Journal of Statistics.