We will answer a question raised by Ronald Douglas in connection with his work on a conjecture in operator theory due to William Arveson. Let \(S \) denote the unit sphere in \(\mathbb{C}^n \). If \(A \) is a function algebra on \(S \) that contains the ball algebra \(A(S) \) and whose maximal ideal space is \(S \), and if \(A \) is invariant under the action of the \(n \)-torus on \(S \), does it follow that \(A = C(S) \)?

When \(n = 1 \), Wermer’s maximality theorem gives immediately that the answer is yes. Surprisingly, in higher dimensions the answer depends on the dimension. The proof is related to a peak point theorem of John Anderson and the speaker and counterexamples to the peak point conjecture due to Richard Basener and the speaker.

We will also present a conjecture of a more general nature concerning function algebras that are invariant under a transitive group action, and we will prove the conjecture under a mild additional hypothesis.