VESELIN JUNGIC, Simon Fraser University, Burnaby, BC
Ramsey Rainbow Theory
The van der Waerden theorem in Ramsey theory states that, for every k and t and sufficiently large N, every k-coloring of $[N]$ contains a monochromatic arithmetic progression of length t. Motivated by this result, Radoičić conjectured in 2001 that every equinumerous 3 -coloring of [$3 n$] contains a 3 -term rainbow arithmetic progression, i.e., an arithmetic progression whose terms are colored with distinct colors. This conjecture initiated a serious results having rainbow structures as the common theme. One such result is that every 3 -coloring of the set of natural numbers for which each color class has density more than $1 / 6$, contains a 3 -term rainbow arithmetic progression. A similar results for colorings of \mathbb{Z}_{n} is true.
In this presentation an overview of the current state in research directions in the rainbow Ramsey theory will be given. I will list results, problems, and conjectures related to existence of rainbow arithmetic progressions in $[n]$ and \mathbb{N}. A general perspective on other rainbow Ramsey-type problems will be given.

