FRANK RUSKEY, University of Victoria, Victoria, BC

Counting strings over the integers mod a power of two with given elementary symmetric function evaluations

Let α be a string over \mathbb{Z}_q , where $q = 2^d$. The *j*-th elementary symmetric function evaluated at α is denoted $e_j(\alpha)$. We study the cardinalities $S_q(m \ ; \ \tau_1, \tau_2, \dots, \tau_t)$ of the set of length *m* strings for which $e_i(\alpha) = \tau_i$. The profile $\mathbf{k}(\alpha) = \langle k_1, k_2, \dots, k_{q-1} \rangle$ of a string α is the sequence of frequencies with which each letter occurs. The profile of α determines $e_j(\alpha)$, and hence S_q . Let $h_n: \mathbb{Z}_{2^{n+d-1}}^{(q-1)} \mapsto \mathbb{Z}_{2^d}[z] \mod z^{2^n}$ be the map that takes $\mathbf{k}(\alpha) \mod 2^{n+d-1}$ to the polynomial $1 + e_1(\alpha)z + e_2(\alpha)z^2 + \dots + e_{2^n-1}(\alpha)z^{2^{n-1}}$. We show that h_n is a group homomorphism and establish necessary conditions for membership in the kernel for fixed *d*. The kernel is determined for d = 2, 3. The range of h_n is described for d = 2. These results are used to "efficiently" compute $S_4(m; \tau_1, \tau_2, \dots, \tau_t)$.

This is joint research with Bob Miers at UVic.