ERIC MENDELSOHN, University of Toronto

When Systems Collide
We present a conjecture which is a common generalization of the Doyen-Wilson Theorem and Lindner and Rosa's intersection theorem for Steiner triple systems. Given $u, v, \equiv 1,3(\bmod 6), u<v<2 u+1$ we ask for the minimum r such that there exists a Steiner triple system $(U, \mathcal{B}),|U|=u$ such that some partial system $(U, \mathcal{B} \backslash \mathfrak{d})$ can be completed to a $\mathrm{STS}(v)$, $\left(V, \mathcal{B}^{\prime}\right)$, where $|\boldsymbol{d}|=r$. In other words, in order to "quasi-embed" an $\mathrm{STS}(u)$ into an $\mathrm{STS}(v)$, we must remove r blocks from the small system, and this r is the least such with this property. One can also view the quantity $u(u-1) / 6-r$ as the maximum intersection of an STS (u) and an STS (v) with $u<v$. We conjecture that the necessary minimum $r=(v-u)(2 u+1-v) / 6$ can be achieved, except when $u=6 t+1$ and $v=6 t+3$, in which case it is $r=3 t$ for $t \neq 2$, or $r=7$ when $t=2$. Using small examples and recursion, we solve the cases $v-u=2$ and 4 , asymptotically solve the cases $v-u=6,8,10$, and further show for given $v-u>2$ that an asymptotic solution exists if solutions exist for a run of consecutive values of u (whose required length is no more than $v-u$). Some results are obtained for v close to $2 u+1$ as well. The cases where $v \approx 3 u / 2$ seem to be the hardest. For intersections sizes between 0 and this maximum we generalize Lindner and Rosa's intersection problem - "determine the possible numbers of blocks common to two Steiner triple systems STS $(u),(U, \mathcal{B}), U=V^{\prime \prime}$ to the cases STS $(v),\left(V, \mathcal{B}^{\prime}\right)$, with $U \subseteq V$ and solve it completely for $v-u=2,4$ and for $v \geq 2 u-3$.
Joint work with P. Dukes.

