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Representations constructed from the geometry of homogeneous spaces involve many choices, so we would like to parametrize
coarse invariants, like dimensions of weight spaces of irreducible representations, by combinatorial objects. A classical example
is the Grothendieck—Springer resolution of the variety of nilpotent elements A\ in a semi-simple Lie algebra: the top Borel-Moore
homology of a fibre of this resolution is an irreducible representation of the associated Weyl group. In type A, a canonical
basis is parametrized by Young tableaux. This talk will review a more modern example: the torus-equivariant cohomology of
upper-triangular Slodowy slices. We explain the representation theory and combinatorics of this example: using the geometric
Satake correspondence and a Spaltenstein decomposition, we show that orbital varieties in Slodowy slices define bases in
representations. Under the magnifying glass of a finer geometric invariant — the Duistermaat-Heckmann measure — we show
that not all bases are created equal.



