MATTHIAS FRANZ, University of Western Ontario

The number of connected orbit types in a \(G \)-manifold

The orbits of a compact Lie group \(G \) acting on a manifold \(X \) are classified by conjugacy classes of closed subgroups of \(G \). The slice theorem implies that there are only finitely many orbit types if \(X \) is compact. Mann showed in 1962 that the same conclusion holds if \(X \) is orientable and of finite type.

I will present an analogous theorem for connected orbit types, where one only looks at the isotropy Lie algebras: The number of connected orbit types is finite if \(X \) has finite Betti numbers. The proof rests on fundamental properties of a suitably defined equivariant homology theory.