We give a generalization of the averaging argument for Maschke's theorem in the setting of table algebras (aka. fusion rings). Table algebras are algebras with involution over \mathbb{C} with finite basis B that contains 1, is \ast-closed, has non-negative real structure constants $\{\lambda_{bcd} : b, c, d \in B\}$ given by $bc = \sum_d \lambda_{bcd}d$, and satisfies the pseudo-inverse condition: $\lambda_{b1} > 0 \iff c = b^\ast$, and $\lambda_{b^\ast b} = \lambda_{bb^\ast}$. When F is a field with (possibly trivial) involution containing the structure constants $\{\lambda_{bcd} : b, c, d \in B\}$, then FB becomes an F-algebra with involution defined by

$$\left(\sum_{b \in B} \alpha_b b\right)^\ast = \sum_{b \in B} \bar{\alpha}_b b^\ast.$$

This version of Maschke's theorem gives sufficient conditions on the characteristic of the field F for FB to be a semisimple algebra, in terms of arithmetic properties of the table algebra basis B.
