ERIC HARPER, McMaster University SU(N) Casson-Lin invariants for links in S^3

In 1992, X.-S. Lin introduced a Casson-type invariant h(K) of knots $K \subset S^3$ via a signed count of conjugacy classes of irreducible SU(2) representations of the knot group $\pi_1(S^3-K)$ where all meridians of K are represented by trace-free SU(2) matrices. Lin showed that h(K) equals one-half the knot signature of K. With N. Saveliev, we defined an invariant of 2-component links $L \subset S^3$ using a construction analogous to Lin's. The invariant h(L) is a signed count of conjugacy classes of certain projective SU(2) representations of the link group $\pi_1(S^3-L)$. We showed that h(L) equals the linking number. In a recent joint work with H. U. Boden, we introduce invariants for n-component links L in S^3 where $n \geq 2$. The invariants are denoted $h_{N,a}(L)$ where $a = (a_1, \ldots, a_n)$ is an n-tuple of integers and each a_i labels the i-th component of the link. They are defined as a signed count of conjugacy classes of certain projective SU(N) representations of $\pi_1(S^3-L)$. In this talk, we will outline their construction, give a vanishing result for split links, and discuss some preliminary computations.