In this talk we show that any finite dimensional irreducible representation of a complex simple Lie algebra of rank \(n \) remains indecomposable if restricted to some abelian subalgebras of the (minimal as it will be explained in the talk) dimension \(n \), extending the corresponding result obtained in [1] (Theorem 3.9) for the simple Lie algebra of type \(A_n \). Such abelian subalgebra \(a \) can be constructed as follows.

Let \(g \) be the complex simple Lie algebra, \(h \subset g \) its Cartan subalgebra and \(\Delta = \Delta(g, h) \) the corresponding set of roots. Further for any \(\alpha \in \Delta \) let \(X_{\alpha} \) be a basis of root space \(g_{\alpha} = \{ X \in g \mid [H, X] = \alpha(H)X \ \forall H \in h \} \), \(\Pi = \{\alpha_1, \ldots, \alpha_n\} \) a set of simple roots in \(\Delta \) and set \(Y_{\alpha_i} = X_{-\alpha_i} \), then \(a \) is the abelian subalgebra of \(g \) spanned by the vectors \(\{Y_{\alpha_2i+1} \mid i = 0, \ldots, \left[\frac{n}{2} \right] \} \) and \(\{X_{\alpha_2j} \mid j = 1, \ldots, \left[\frac{n}{2} \right] \} \), where \([x]\) denotes the integer part of \(x \).