The classification of uniserial $\mathfrak{sl}(2) \ltimes V(m)$-modules and a new interpretation of the Racah-Wigner $6j$-symbol

All Lie algebras and representations are assumed to be finite dimensional over \mathbb{C}. Let $V(m)$ be the irreducible $\mathfrak{sl}(2)$-module with highest weight $m \geq 1$ and let $g_m = \mathfrak{sl}(2) \ltimes V(m)$. In this talk we present a joint work with F. Szechtman in which we classify of all uniserial g_m-modules. Recall that a g-module is uniserial when its submodules form a chain. Uniserial modules are usually viewed as building blocks to understand more general classes of indecomposable representations. A classification of the indecomposable g_m-modules is far from being achieved even for $m = 1$, see [DR],[Pi].

In our classification, the main family of uniserial g_m-modules is actually constructed for any $g = s \ltimes V(\mu)$, where s is a semisimple Lie algebra and $V(\mu)$ is the irreducible s-module with highest weight $\mu \neq 0$. It turns out that the members of this family are, but for a few exceptions of lengths 2, 3 and 4, the only uniserial g_m-modules.

One major step towards this classification is the determination of all admissible sequences of length 3, these are sequences $V(a), V(b), V(c)$ for which there is a uniserial g_m-module with these composition factors. This step depends in an essential manner on the determination of certain non-trivial zeros of Racah-Wigner $6j$-symbol.

References
