RICHARD MCINTOSH, University of Regina
p-adic equations for power sums
For odd primes p and positive integers k, define $S_{k}=\sum_{r=1}^{p-1} r^{-k}$. Applying the p-adic logarithm to the identity $\prod_{r=1}^{p-1}\left(1-\frac{p}{r}\right)=1$, we obtain $\sum_{k=1}^{\infty} p^{k} \frac{S_{k}}{k}=0$, where the convergence is p-adic. (This means that the equation holds modulo p^{m} for arbitrarily large m.) In this talk I will give some other p-adic equations for the power sums S_{k}. For example, $\sum_{k=1}^{\infty} p^{k}(-1)^{k-1} B_{k-1} S_{k}=0$, where B_{n} is the nth Bernoulli number.

