ALEX FEINGOLD, State University of New York at Binghamton

Decomposition of level-1 representations of $D_{4}^{(1)}$ with respect to its subalgebra $G_{2}^{(1)}$ in the spinor construction

In Contemp Math, Vol. 121, Feingold, Frenkel and Ries gave a spinor construction of the vertex operator para-algebra $V = V^{0} \oplus V^{1} \oplus V^{2} \oplus V^{3}$, whose summands are 4 level-1 irreps of the affine Kac-Moody algebra $D_{4}^{(1)}$. The triality group $S_{3} = \langle \sigma, \tau \mid \sigma^{3} = 1 = \tau^{2}, \tau \sigma \tau = \sigma^{-1} \rangle$ in $\text{Aut}(V)$ was constructed, preserving V^{0} and permuting V^{i}, $i = 1, 2, 3$. V is $\frac{1}{2}\mathbb{Z}$-graded and $V^{i,n}$ denotes the n-graded subspace of V^{i}. Vertex operators $Y(v, z)$ for $v \in V^{0}$ represent $D_{4}^{(1)}$ on V, while those for which $\sigma(v) = v$ represent $G_{2}^{(1)}$. V decomposes into the direct sum of $G_{2}^{(1)}$ irreps by a two-step process, first decomposing with respect to the intermediate algebra $B_{3}^{(1)}$ represented by $Y(v, z)$ for $\tau(v) = v$. There are three vertex operators, $Y(\omega_{D_{4}}, z)$, $Y(\omega_{B_{3}}, z)$, $Y(\omega_{G_{2}}, z)$, each representing the Virasoro algebra given by the Sugawara constructions from the three algebras. These give two coset Virasoro constructions, $Y(\omega_{D_{4}} - \omega_{B_{3}}, z)$ and $Y(\omega_{B_{3}} - \omega_{G_{2}}, z)$, with central charges $1/2$ and $7/10$, respectively, the first commuting with $B_{3}^{(1)}$, the second commuting with $G_{2}^{(1)}$, and each commuting with the other. This gives the space of highest weight vectors for $G_{2}^{(1)}$ in V as tensor products of irreducible Virasoro modules $L(1/2, h_{1}) \otimes L(7/10, h_{2})$.

This dissertation research of my student, Quincy Loney, explicitly constructs these coset Virasoro operators, and uses them to study the decomposition of V with respect to $G_{2}^{(1)}$. This work provides a spinor construction of the $c = 7/10$ Virasoro modules inside V, and provides a vertex operator algebra naturally associated with the basic module for $G_{2}^{(1)}$.