Additive group actions associated to derivations of \(R[X, Y, Z] \) with a slice

This talk features a simple family of locally nilpotent \(R \)-derivations of \(R[X, Y, Z] \) with a slice, where \(R = \mathbb{C}[a, b] \). Equivalently, this is a family of \(\mathbb{G}_a \)-actions on \(\mathbb{A}^5 \) such that \(\mathbb{A}^5 = V \times \mathbb{A} \), where \(V \) is the variety defined by the algebra of invariants, and \(\mathbb{G}_a \) acts by translation. We show that \(V \) is an \(\mathbb{A}^2 \)-fibration over \(\mathbb{A}^2 \), but it is unknown whether this is a trivial fibration. Note that \(V \) has the form \(\text{Spec}(B/sB) \), where \(B = R[X, Y, Z] \) and \(s \in B \) is the corresponding slice. We give a method for finding \(f \in B \) of degree smaller than \(s \) such that \(B/fB \) and \(B/sB \) are isomorphic as fibrations. However, it is not known whether \(f \) is a slice for any locally nilpotent derivation of \(B \). These examples are motivated by the Vénéreau polynomials \(v \in L = \mathbb{C}[x, y, z, u] \). It was shown by the author that, if \(K = \mathbb{C}[x, v] \), then \(L[t] = K[X, Y, Z] \). The main idea is to study \(d/dt \) as a \(K \)-derivation of \(K[X, Y, Z] \).