ROGER BARNARD, Texas Tech University, Lubbock, Texas

Iceberg-type problems in two dimensions

We consider the complex plane \(\mathbb{C} \) as a space filled with two different media, separated by the real axis \(\mathbb{R} \). Let \(H \) denote the upper half-plane. For a planar body \(E \), the iceberg-type problem is to estimate characteristics of the invisible part \(E \setminus H \) from the characteristics of the whole body \(E \) and its visible part \(E \cap H \).

In this talk, we outline the methods we use to determine the maximal draft of \(E \) as an explicit function of the logarithmic capacity of \(E \) and the area of \(E \cap H \).