JAVAD MASHREGHI, Laval

Integral representations of the derivatives of functions in \(\mathcal{H}(b) \)

Let \(H^p(\mathbb{C}_+) \) stand for the Hardy space of the upper half plane \(\mathbb{C}_+ \), and for \(\varphi \in L^\infty(\mathbb{R}) \), let \(T_\varphi \) stand for the Toeplitz operator defined on \(H^2(\mathbb{C}_+) \) by

\[
T_\varphi(f) := P_+(\varphi f), \quad (f \in H^2(\mathbb{C}_+)),
\]

where \(P_+ \) denotes the orthogonal projection of \(L^2(\mathbb{R}) \) onto \(H^2(\mathbb{C}_+) \). Then, for \(\varphi \in L^\infty(\mathbb{R}), \|\varphi\|_\infty \leq 1 \), the de Branges–Rovnyak space \(\mathcal{H}(\varphi) \), associated to \(\varphi \), consists of those \(H^2(\mathbb{C}_+) \) functions which are in the range of the operator \((\text{Id} - T_\varphi T_\varphi^{1/2}) \).

It is a Hilbert space when equipped with the inner product

\[
\langle (\text{Id} - T_\varphi T_\varphi^{1/2}) f, (\text{Id} - T_\varphi T_\varphi^{1/2}) g \rangle_\varphi = \langle f, g \rangle_2,
\]

where \(f, g \in H^2(\mathbb{C}_+) \ominus \ker(\text{Id} - T_\varphi T_\varphi^{1/2}) \). In particular, if \(b \) is an inner function, then \((\text{Id} - T_b T_b^{1/2}) \) is an orthogonal projection and \(\mathcal{H}(b) \) is a closed (ordinary) subspace of \(H^2(\mathbb{C}_+) \) which coincides with the so-called model spaces \(K_b = H^2(\mathbb{C}_+) \ominus bH^2(\mathbb{C}_+) \).

We give some integral representations for the boundary values of derivatives of functions of the de Branges–Rovnyak spaces \(\mathcal{H}(b) \), where \(b \) is an extreme point of the unit ball of \(H^\infty(\mathbb{C}_+) \).