CONSTANTIN COSTARA, Univ. Laval, Dep. de Math. et Stat., Quebec, Canada, G1K 7P4 *On local irreducibility of the spectrum*

Let \mathcal{M}_n be the algebra of $n \times n$ complex matrices, and for $x \in \mathcal{M}_n$ denote by $\sigma(x)$ and $\rho(x)$ the spectrum and spectral radius of x respectively. Let D be a domain in \mathcal{M}_n containing 0, and let $F: D \to \mathcal{M}_n$ be a holomorphic map. We prove:

(1) if $\sigma(F(x)) \cap \sigma(x) \neq \emptyset$ for $x \in D$, then $\sigma(F(x)) = \sigma(x)$ for $x \in D$;

(2) if $\rho(F(x)) = \rho(x)$ for $x \in D$, there exists λ of modulus one such that $\sigma(F(x)) = \lambda \sigma(x)$ for $x \in D$.

Both results are special cases of theorems expressing the irreducibility of the spectrum $\sigma(x)$ near x = 0. Joint work with T. J. Ransford.