Let us say that two sequences of pairwise distinct reals \(\ldots, a_1, a_2, \ldots \) and \(\ldots, b_1, b_2, \ldots \) defined on the same set \(S \) (which can be finite, or equal to \(\mathbb{N} \) or \(\mathbb{Z} \)) are equivalent if for all \(i, j \in S \) we have \(a_i < a_j \) if and only if \(b_i < b_j \). An equivalence class of sequences on \(S \) will be called an \((S-)\)permutation. An \(S \)-permutation can be also interpreted as a linear ordering of \(S \). A permutation \(a \) having a representative \(a = \ldots a_1, a_2, \ldots \) is called \(t \)-periodic if for all \(i, j \) such that \(i, j, i+t, j+t \in S \) we have \(a_i < a_j \) if and only if \(a_{i+t} < a_{j+t} \). An \(\mathbb{N} \)-permutation is called \emph{ultimately} \(t \)-periodic if the periodicity property holds for all \(i, j \geq n_0 \) for some \(n_0 \).

Surprisingly, for all \(t \geq 2 \) there exist infinitely many \(t \)-periodic \(\mathbb{Z} \)-permutations. We characterize them and give a way to code each of them.

Then we define complexity \(f_\pi(n) \) of a permutation \(\pi \) as the number of permutations (i.e., equivalence classes) \(\pi_k, \pi_{k+1}, \ldots, \pi_{k+n-1} \). Analogously to the subword complexity of words, this function is non-decreasing, and we have:

Theorem 1 Let \(\pi \) be a \(\mathbb{Z} \) (\(\mathbb{N} \)-)permutation; then \(f_\pi(n) \leq C \) if and only if \(\pi \) is periodic (ultimately periodic).

However, other properties of subword complexity cannot be directly extended to complexity of permutations: in particular, one-sided and two-sided infinite permutations have different minimal complexity.

Theorem 2 For each unbounded growing function \(g(n) \) there exists a not ultimately periodic \(\mathbb{N} \)-permutation \(\pi \) with \(f_\pi(n) \leq g(n) \) for all \(n \geq n_0 \). On the other hand, for each non-periodic \(\mathbb{Z} \)-permutation \(\pi \) we have \(f_\pi(n) \geq n - C \) for some constant \(C \) which can be arbitrarily large.

This is a joint work with D. G. Fon-Der-Flaass.