ANNA FRID, Sobolev Institute of Mathematics SB RAS

On complexity of infinite permutations
Let us say that two sequences of pairwise distinct reals $\ldots, a_{1}, a_{2}, \ldots$ and $\ldots, b_{1}, b_{2}, \ldots$ defined on the same set S (which can be finite, or equal to \mathbb{N} or \mathbb{Z}) are equivalent if for all $i, j \in S$ we have $a_{i}<a_{j}$ if and only if $b_{i}<b_{j}$. An equivalence class of sequences on S will be called an (S-)permutation. An S-permutation can be also interpreted as a linear ordering of S. A permutation \bar{a} having a representative $a=\ldots a_{1}, a_{2}, \ldots$ is called t-periodic if for all i, j such that $i, j, i+t, j+t \in S$ we have $a_{i}<a_{j}$ if and only if $a_{i+t}<a_{j+t}$. An \mathbb{N}-permutation is called ultimately t-periodic if the periodicity property holds for all $i, j \geq n_{0}$ for some n_{0}.
Surprisingly, for all $t \geq 2$ there exist infinitely many t-periodic \mathbb{Z}-permutations. We characterize them and give a way to code each of them.
Then we define complexity $f_{\bar{a}}(n)$ of a permutation \bar{a} as the number of permutations (i.e., equivalence classes) $\overline{a_{k}, a_{k+1}, \ldots, a_{k+n-1}}$. Analogously to the subword complexity of words, this function is non-decreasing, and we have:

Theorem 1 Let \bar{a} be a $\mathbb{Z}\left(\mathbb{N}\right.$-)permutation; then $f_{\bar{a}}(n) \leq C$ if and only if \bar{a} is periodic (ultimately periodic).
However, other properties of subword complexity cannot be directly extended to complexity of permutations: in particular, one-sided and two-sided infinite permutations have different minimal complexity.

Theorem 2 For each unbounded growing function $g(n)$ there exists a not ultimately periodic \mathbb{N}-permutation \bar{a} with $f_{\bar{a}}(n) \leq$ $g(n)$ for all $n \geq n_{0}$. On the other hand, for each non-periodic \mathbb{Z}-permutation \bar{a} we have $f_{\bar{a}}(n) \geq n-C$ for some constant C which can be arbitrarily large.

This is a joint work with D. G. Fon-Der-Flaass.

