Holomorphic dynamical systems whose orbit spaces give new examples of compact complex manifolds

We consider in \mathbb{C}^n a system of m commuting linear ODE $(2m + 1 < n)$ given by m commuting matrices A_1, \ldots, A_m. Under some generic and arithmetic conditions, the (semi-stable) orbit spaces of the $\mathbb{C}^m \times \mathbb{C}^*$ action generated by the commuting equations, together with the action of multiplication of scalars in \mathbb{C}^*, give compact, complex manifolds that fiber over toric varieties. We indicate the proof that every nonsingular toric variety is obtained this way.

In this talk I will describe joint work with Laurent Meersseman.