Problem 1
Let \(f(x) = \frac{a^x}{x^a} \). Evaluate the sum
\[
f\left(\frac{1}{1996} \right) + f\left(\frac{2}{1996} \right) + f\left(\frac{3}{1996} \right) + \cdots + f\left(\frac{1995}{1996} \right)
\]

Problem 2
Let \(a, b, \) and \(c \) be positive real numbers. Prove that
\[
a^a b^b c^c \geq (abc)^{\frac{a+b+c}{a+b+c}}.
\]

Problem 3
Define a boomerang as a quadrilateral whose opposite sides do not intersect and one of whose internal angles is greater than 180 degrees. (See Figure displayed.) Let \(C \) be a convex polygon having 5 sides. Suppose that the interior region of \(C \) is the union of \(q \) quadrilaterals, none of whose interiors intersect one another. Also suppose that \(b \) of these quadrilaterals are boomerangs. Show that
\[
q \geq b + \frac{4\pi^2 - \pi}{\pi^2}.
\]

Problem 4
Let \(n \) be a fixed positive integer. Show that for only nonnegative integers \(k \), the diophantine equation
\[
x_1^3 + x_2^3 + \cdots + x_n^3 = y^{3k+2}
\]
has infinitely many solutions in positive integers \(x \) and \(y \).

Problem 5
Suppose that \(u \) is a real parameter with \(0 < u < 1 \). Define
\[
f(x) = \begin{cases}
0 & \text{if } 0 \leq x \leq u \\
1 - \left(\sqrt{ux} + \sqrt{(1-u)(1-x)} \right)^2 & \text{if } u \leq x \leq 1
\end{cases}
\]
and define the sequence \(\{u_n\} \) recursively as follows:
\[
u_1 = f(1), \text{ and } u_n = f(u_{n-1}) \text{ for all } n > 1.
\]
Show that there exists a positive integer \(k \) for which \(u_k = 0 \).