Problem 1
Evaluate the sum
\[\sum_{n=1}^{1994} \frac{(-1)^n n^2 + n + 1}{n!}. \]

Problem 2
Show that every positive integral power of \(\sqrt{2} - 1 \) is of the form \(\sqrt{m} - \sqrt{m-1} \) for some positive integer \(m \). (e.g. \((\sqrt{2} - 1)^2 = 3 - 2\sqrt{2} = \sqrt{5} - \sqrt{3} \)).

Problem 3
Twenty-five men sit around a circular table. Every hour there is a vote, and each must respond yes or no. Each man behaves as follows: on the \(n \)th vote, if his response is the same as the response of at least one of the two people he sits between, then he will respond the same way on the \((n + 1) \)th vote as on the \(n \)th vote; but if his response is different from that of both his neighbours on the \(n \)-th vote, then his response on the \((n + 1) \)-th vote will be different from his response on the \(n \)th vote. Prove that, however everybody responded on the first vote, there will be a time after which nobody’s response will ever change.

Problem 4
Let \(AB \) be a diameter of a circle \(\Omega \) and \(P \) be any point not on the line through \(A \) and \(B \). Suppose the line through \(P \) and \(A \) cuts \(\Omega \) again in \(U \), and the line through \(P \) and \(B \) cuts \(\Omega \) again in \(V \). (Note that in case of tangency \(U \) may coincide with \(A \) or \(V \) may coincide with \(B \).) Also, if \(P \) is on \(\Omega \) then \(P = U = V \). Suppose that \(|PU| = s|PA| \) and \(|PV| = t|PB| \) for some nonnegative real numbers \(s \) and \(t \). Determine the cosine of the angle \(\angle APB \) in terms of \(s \) and \(t \).

Problem 5
Let \(ABC \) be an acute angled triangle. Let \(AD \) be the altitude on \(BC \), and let \(H \) be any interior point on \(AD \). Lines \(BH \) and \(CH \), when extended, intersect \(AC \) and \(AB \) at \(E \) and \(F \), respectively. Prove that \(\angle EDH = \angle FDH \).