Canadian Mathematical Olympiad
1987

PROBLEM 1
Find all solutions of \(a^2 + b^2 = n! \) for positive integers \(a, b, n \) with \(a \leq b \) and \(n < 14 \).

PROBLEM 2
The number 1987 can be written as a three digit number \(xyz \) in some base \(b \). If \(x + y + z = 1 + 9 + 8 + 7 \), determine all possible values of \(x, y, z, b \).

PROBLEM 3
Suppose \(ABCD \) is a parallelogram and \(E \) is a point between \(B \) and \(C \) on the line \(BC \). If the triangles \(DEC, BED \) and \(BAD \) are isosceles what are the possible values for the angle \(DAB \)?

PROBLEM 4
On a large, flat field \(n \) people are positioned so that for each person the distances to all the other people are different. Each person holds a water pistol and at a given signal fires and hits the person who is closest. When \(n \) is odd show that there is at least one person left dry. Is this always true when \(n \) is even?

PROBLEM 5
For every positive integer \(n \) show that
\[
[\sqrt{n} + \sqrt{n + 1}] = [\sqrt{4n + 1}] = [\sqrt{4n + 2}] = [\sqrt{4n + 3}]
\]
where \([x]\) is the greatest integer less than or equal to \(x \) (for example \([2.3]\) = 2, \([\pi]\) = 3, \([5]\) = 5).