Problem 1
Find all positive integers \(w, x, y \) and \(z \) which satisfy \(w! = x! + y! + z! \).

Problem 2
For each real number \(r \) let \(T_r \) be the transformation of the plane that takes the point \((x, y)\) into the point \((2^r x, r 2^r x + 2^r y)\). Let \(F \) be the family of all such transformations i.e. \(F = \{ T_r : r \text{ a real number} \} \). Find all curves \(y = f(x) \) whose graphs remain unchanged by every transformation in \(F \).

Problem 3
The area of a triangle is determined by the lengths of its sides. Is the volume of a tetrahedron determined by the areas of its faces?

Problem 4
Prove that for every prime number \(p \), there are infinitely many positive integers \(n \) such that \(p \) divides \(2^n - n \).

Problem 5
The geometric mean (G.M.) of a \(k \) positive numbers \(a_1, a_2, \ldots, a_k \) is defined to be the (positive) \(k \)-th root of their product. For example, the G.M. of 3, 4, 18 is 6. Show that the G.M. of a set \(S \) of \(n \) positive numbers is equal to the G.M. of the G.M.’s of all non-empty subsets of \(S \).