Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Abstract view

Jordan-Chevalley decomposition in Lie algebras

  • Cagliero Leandro,
    CIEM-CONICET, FAMAF-Universidad Nacional de Córdoba, Córdoba, Argentina
  • Fernando Szechtman,
    Department of Mathematics and Statistics, Univeristy of Regina, Regina, Saskatchewan
Format:   LaTeX   MathJax  


We prove that if $\mathfrak{s}$ is a solvable Lie algebra of matrices over a field of characteristic 0, and $A\in\mathfrak{s}$, then the semisimple and nilpotent summands of the Jordan-Chevalley decomposition of $A$ belong to $\mathfrak{s}$ if and only if there exist $S,N\in\mathfrak{s}$, $S$ is semisimple, $N$ is nilpotent (not necessarily $[S,N]=0$) such that $A=S+N$.
Keywords: solvable Lie algebra, Jordan-Chevalley decomposition, representation solvable Lie algebra, Jordan-Chevalley decomposition, representation
MSC Classifications: 17-08, 17B05, 20C40, 15A21 show english descriptions Computational methods
Structure theory
Computational methods
Canonical forms, reductions, classification
17-08 - Computational methods
17B05 - Structure theory
20C40 - Computational methods
15A21 - Canonical forms, reductions, classification

© Canadian Mathematical Society, 2019 :