Abstract view
Homological dimensions of local (co)homology over commutative DGrings


Liran Shaul,
Faculty of Mathematics, Bielefeld University, 33501 Bielefeld, Germany
Abstract
Let $A$ be a commutative noetherian ring,
let $\mathfrak{a}\subseteq A$ be an ideal,
and let $I$ be an injective $A$module.
A basic result in the structure theory of injective modules states
that
the $A$module $\Gamma_{\mathfrak{a}}(I)$ consisting of $\mathfrak{a}$torsion elements
is also an injective $A$module.
Recently, de Jong proved a dual result: If $F$ is a flat $A$module,
then the $\mathfrak{a}$adic completion of $F$ is also a flat $A$module.
In this paper we generalize these facts to commutative noetherian
DGrings:
let $A$ be a commutative nonpositive DGring such that $\mathrm{H}^0(A)$
is a noetherian ring,
and for each $i\lt 0$, the $\mathrm{H}^0(A)$module $\mathrm{H}^i(A)$
is finitely generated.
Given an ideal $\bar{\mathfrak{a}} \subseteq \mathrm{H}^0(A)$,
we show that the local cohomology functor $\mathrm{R}\Gamma_{\bar{\mathfrak{a}}}$
associated to $\bar{\mathfrak{a}}$ does not increase injective dimension.
Dually, the derived $\bar{\mathfrak{a}}$adic completion functor $\mathrm{L}\Lambda_{\bar{\mathfrak{a}}}$
does not increase flat dimension.