CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

Author's Draft

Area Integral Means of Analytic Functions in the Unit Disk

  • Xiaohui Cui,
    Department of Mathematics, Hebei University of Technology, Tianjin 300401, China
  • Chunjie Wang,
    Department of Mathematics, Hebei University of Technology, Tianjin 300401, China
  • Kehe Zhu,
    Department of Mathematics, Shantou University, Guangdong 515063, China
Format:   LaTeX   MathJax   PDF  

Abstract

For an analytic function $f$ on the unit disk $\mathbb D$ we show that the $L^2$ integral mean of $f$ on $c\lt |z|\lt r$ with respect to the weighted area measure $(1-|z|^2)^\alpha\,dA(z)$ is a logarithmically convex function of $r$ on $(c,1)$, where $-3\le\alpha\le0$ and $c\in[0,1)$. Moreover, the range $[-3,0]$ for $\alpha$ is best possible. When $c=0$, our arguments here also simplify the proof for several results we obtained in earlier papers.
Keywords: logarithmic convexity, area integral mean, Bergman space, Hardy space logarithmic convexity, area integral mean, Bergman space, Hardy space
MSC Classifications: 30H10, 30H20 show english descriptions Hardy spaces
Bergman spaces, Fock spaces
30H10 - Hardy spaces
30H20 - Bergman spaces, Fock spaces
 

© Canadian Mathematical Society, 2017 : https://cms.math.ca/