CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

A remark on certain integral operators of fractional type

  • Pablo Alejandro Rocha,
    Universidad Nacional del Sur, Departamento de Matemática, INMABB (Conicet), Buenos Aires, Argentina
Format:   LaTeX   MathJax   PDF  

Abstract

For $m, n \in \mathbb{N}$, $1\lt m \leq n$, we write $n = n_1 + \dots + n_m$ where $\{ n_1, \dots, n_m \} \subset \mathbb{N}$. Let $A_1, \dots, A_m$ be $n \times n$ singular real matrices such that $\bigoplus_{i=1}^{m} \bigcap_{1\leq j \neq i \leq m} \mathcal{N}_j = \mathbb{R}^{n},$ where $\mathcal{N}_j = \{ x : A_j x = 0 \}$, $dim(\mathcal{N}_j)=n-n_j$ and $A_1+ \dots+ A_m$ is invertible. In this paper we study integral operators of the form $T_{r}f(x)= \int_{\mathbb{R}^{n}} \, |x-A_1 y|^{-n_1 + \alpha_1} \cdots |x-A_m y|^{-n_m + \alpha_m} f(y) \, dy,$ $n_1 + \dots + n_m = n$, $\frac{\alpha_1}{n_1} = \dots = \frac{\alpha_m}{n_m}=r$, $0 \lt r \lt 1$, and the matrices $A_i$'s are as above. We obtain the $H^{p}(\mathbb{R}^{n})-L^{q}(\mathbb{R}^{n})$ boundedness of $T_r$ for $0\lt p\lt \frac{1}{r}$ and $\frac{1}{q}=\frac{1}{p} - r$.
Keywords: integral operator, Hardy space integral operator, Hardy space
MSC Classifications: 42B20, 42B30 show english descriptions Singular and oscillatory integrals (Calderon-Zygmund, etc.)
$H^p$-spaces
42B20 - Singular and oscillatory integrals (Calderon-Zygmund, etc.)
42B30 - $H^p$-spaces
 

© Canadian Mathematical Society, 2017 : https://cms.math.ca/