Abstract view
On the Dimension of the Locus of Determinantal Hypersurfaces


Published:20161111
Printed: Sep 2017
Zinovy Reichstein,
Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada V6T 1Z2
Angelo Vistoli,
Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
Abstract
The characteristic polynomial $P_A(x_0, \dots,
x_r)$
of an $r$tuple $A := (A_1, \dots, A_r)$ of $n \times n$matrices
is
defined as
\[ P_A(x_0, \dots, x_r) := \det(x_0 I + x_1 A_1 + \dots + x_r
A_r) \, . \]
We show that if $r \geqslant 3$
and $A := (A_1, \dots, A_r)$ is an $r$tuple of $n \times n$matrices in general position,
then up to conjugacy, there are only finitely many $r$tuples
$A' := (A_1', \dots, A_r')$ such that $p_A = p_{A'}$. Equivalently,
the locus of determinantal hypersurfaces of degree $n$ in $\mathbf{P}^r$
is irreducible of dimension $(r1)n^2 + 1$.