CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

Homological Properties Relative to Injectively Resolving Subcategories

  Published:2015-08-25
 Printed: Dec 2015
  • Zenghui Gao,
    College of Mathematics, Chengdu University of Information Technology, Chengdu, Sichuan 610225, P.R. China
Format:   LaTeX   MathJax   PDF  

Abstract

Let $\mathcal{E}$ be an injectively resolving subcategory of left $R$-modules. A left $R$-module $M$ (resp. right $R$-module $N$) is called $\mathcal{E}$-injective (resp. $\mathcal{E}$-flat) if $\operatorname{Ext}_R^1(G,M)=0$ (resp. $\operatorname{Tor}_1^R(N,G)=0$) for any $G\in\mathcal{E}$. Let $\mathcal{E}$ be a covering subcategory. We prove that a left $R$-module $M$ is $\mathcal{E}$-injective if and only if $M$ is a direct sum of an injective left $R$-module and a reduced $\mathcal{E}$-injective left $R$-module. Suppose $\mathcal{F}$ is a preenveloping subcategory of right $R$-modules such that $\mathcal{E}^+\subseteq\mathcal{F}$ and $\mathcal{F}^+\subseteq\mathcal{E}$. It is shown that a finitely presented right $R$-module $M$ is $\mathcal{E}$-flat if and only if $M$ is a cokernel of an $\mathcal{F}$-preenvelope of a right $R$-module. In addition, we introduce and investigate the $\mathcal{E}$-injective and $\mathcal{E}$-flat dimensions of modules and rings. We also introduce $\mathcal{E}$-(semi)hereditary rings and $\mathcal{E}$-von Neumann regular rings and characterize them in terms of $\mathcal{E}$-injective and $\mathcal{E}$-flat modules.
Keywords: injectively resolving subcategory, \mathcal{E}-injective module (dimension), \mathcal{E}-flat module (dimension), cover, preenvelope, \mathcal{E}-(semi)hereditary ring injectively resolving subcategory, \mathcal{E}-injective module (dimension), \mathcal{E}-flat module (dimension), cover, preenvelope, \mathcal{E}-(semi)hereditary ring
MSC Classifications: 16E30, 16E10, 16E60 show english descriptions Homological functors on modules (Tor, Ext, etc.)
Homological dimension
Semihereditary and hereditary rings, free ideal rings, Sylvester rings, etc.
16E30 - Homological functors on modules (Tor, Ext, etc.)
16E10 - Homological dimension
16E60 - Semihereditary and hereditary rings, free ideal rings, Sylvester rings, etc.
 

© Canadian Mathematical Society, 2017 : https://cms.math.ca/