CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

A Specialisation of the Bump-Friedberg $L$-function

  Published:2015-05-14
 Printed: Sep 2015
  • Nadir Matringe,
    Université de Poitiers, Laboratoire de Mathématiques et Applications, , Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, , 86962, Futuroscope Chasseneuil Cedex
Format:   LaTeX   MathJax   PDF  

Abstract

We study the restriction of the Bump-Friedberg integrals to affine lines $\{(s+\alpha,2s),s\in\mathbb{C}\}$. It has a simple theory, very close to that of the Asai $L$-function. It is an integral representation of the product $L(s+\alpha,\pi)L(2s,\Lambda^2,\pi)$ which we denote by $L^{lin}(s,\pi,\alpha)$ for this abstract, when $\pi$ is a cuspidal automorphic representation of $GL(k,\mathbb{A})$ for $\mathbb{A}$ the adeles of a number field. When $k$ is even, we show that for a cuspidal automorphic representation $\pi$, the partial $L$-function $L^{lin,S}(s,\pi,\alpha)$ has a pole at $1/2$, if and only if $\pi$ admits a (twisted) global period, this gives a more direct proof of a theorem of Jacquet and Friedberg, asserting that $\pi$ has a twisted global period if and only if $L(\alpha+1/2,\pi)\neq 0$ and $L(1,\Lambda^2,\pi)=\infty$. When $k$ is odd, the partial $L$-function is holmorphic in a neighbourhood of $Re(s)\geq 1/2$ when $Re(\alpha)$ is $\geq 0$.
Keywords: automorphic L functions automorphic L functions
MSC Classifications: 11F70, 11F66 show english descriptions Representation-theoretic methods; automorphic representations over local and global fields
Langlands $L$-functions; one variable Dirichlet series and functional equations
11F70 - Representation-theoretic methods; automorphic representations over local and global fields
11F66 - Langlands $L$-functions; one variable Dirichlet series and functional equations
 

© Canadian Mathematical Society, 2017 : https://cms.math.ca/