CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

Injective Tauberian Operators on $L_1$ and Operators with Dense Range on $\ell_\infty$

  Published:2014-11-03
 Printed: Jun 2015
  • William Johnson,
    Department of Mathematics, Texas A&M University, College Station, TX 77843, USA
  • Amir Bahman Nasseri,
    Fakultät für Mathematik, Technische Universität Dortmund, D-44221 Dortmund, Germany
  • Gideon Schechtman,
    Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel
  • Tomasz Tkocz,
    Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
Format:   LaTeX   MathJax   PDF  

Abstract

There exist injective Tauberian operators on $L_1(0,1)$ that have dense, nonclosed range. This gives injective, nonsurjective operators on $\ell_\infty$ that have dense range. Consequently, there are two quasi-complementary, noncomplementary subspaces of $\ell_\infty$ that are isometric to $\ell_\infty$.
Keywords: $L_1$, Tauberian operator, $\ell_\infty$ $L_1$, Tauberian operator, $\ell_\infty$
MSC Classifications: 46E30, 46B08, 47A53 show english descriptions Spaces of measurable functions ($L^p$-spaces, Orlicz spaces, Kothe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Ultraproduct techniques in Banach space theory [See also 46M07]
(Semi-) Fredholm operators; index theories [See also 58B15, 58J20]
46E30 - Spaces of measurable functions ($L^p$-spaces, Orlicz spaces, Kothe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46B08 - Ultraproduct techniques in Banach space theory [See also 46M07]
47A53 - (Semi-) Fredholm operators; index theories [See also 58B15, 58J20]
 

© Canadian Mathematical Society, 2017 : https://cms.math.ca/