Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-26T23:38:09.026Z Has data issue: false hasContentIssue false

A Note on the Weierstrass Preparation Theorem in Quasianalytic Local Rings

Published online by Cambridge University Press:  20 November 2018

Adam Parusiński
Affiliation:
Univ. Nice Sophia Antipolis, CNRS, LJAD, UMR 7351, 06100 Nice, France e-mail: parus@unice.fr
Jean-Philippe Rolin
Affiliation:
Univ. de Bourgogne (Dijon), I.M.B., 9 av. A. Savary, BP47870, 21078 Dijon Cedex, France e-mail: rolin@u-bourgogne.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Consider quasianalytic local rings of germs of smooth functions closed under composition, implicit equation, and monomial division. We show that if the Weierstrass Preparation Theoremholds in such a ring, then all elements of it are germs of analytic functions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

References

[1] Acquistapace, F., Broglia, F., Bronshtein, M., Nicoara, A., and Zobin, N., Failure of the Weierstrass preparation theorem in quasi-analytic Denjoy–Carleman rings. Eprint arXiv:1212.4265, 2012.Google Scholar
[2] Bianconi, R., Nondefinability results for expansions of the field of real numbers by the exponential function and by the restricted sine function. J. Symbolic Logic 62 (1997), 11731178. http://dx.doi.org/10.2307/2275634 Google Scholar
[3] Bierstone, E. and Milman, P. D., Resolution of singularities in Denjoy–Carleman classes. Selecta Math. (N.S.) 10 (2004), 128. http://dx.doi.org/10.1007/s00029-004-0327-0 Google Scholar
[4] Bochnak, J. and Siciak, J., Analytic functions in topological vector spaces. Studia Math. 39 (1971), 77112.Google Scholar
[5] Borel, E., Sur la généralisation du prolongement analytique. C. R. Acad. Sci. 130 (1900), 11151118.Google Scholar
[6] Borel, E., Sur les séries de polynômes et de fractions rationnelles. Acta Math. 24 (1901), 309387. http://dx.doi.org/10.1007/BF02403078 Google Scholar
[7] Carleman, T., Les fonctions quasi-analytiques. Gauthier Villars, 1926.Google Scholar
[8] Childress, C. L., Weierstrass division in quasianalytic local rings. Canad. J. Math. 28 (1976), 938953. http://dx.doi.org/10.4153/CJM-1976-091-7 Google Scholar
[9] Denjoy, A., Sur les fonctions quasi-analytiques de la variable r´eelle. C. R. Acad. Sci. Paris 123 (1921), 13201322.Google Scholar
[10] van den Dries, L., On the elementary theory of restricted elementary functions. J. Symbolic Logic 53 (1988), 796808. http://dx.doi.org/10.2307/2274572 Google Scholar
[11] van den Dries, L., Tame topology and o-minimal structures. Cambridge University Press, 1998.Google Scholar
[12] van den Dries, L. and Speissegger, P., The field of reals with multisummable series and the exponential function. Proc. London Math. Soc. (3) 81 (2000), 513565. http://dx.doi.org/10.1112/S0024611500012648 Google Scholar
[13] Elkhadiri, A., Link between Noetherianity and the Weierstrass Division Theorem on some quasianalytic local rings. Proc. Amer. Math. Soc. 140 (2012), 38833892. http://dx.doi.org/10.1090/S0002-9939-2012-11243-2 Google Scholar
[14] Elkhadiri, A. and Sfouli, H., Weierstrass division theorem in definable C1 germs in a polynomially bounded o-minimal structure. Ann. Polon. Math. 89 (2006), 127137. http://dx.doi.org/10.4064/ap89-2-2 Google Scholar
[15] Elkhadiri, A., Weierstrass division theorem in quasianalytic local rings. Studia Math. 185 (2008), 8386. http://dx.doi.org/10.4064/sm185-1-5 Google Scholar
[16] Komatsu, H., The implicit function theorem for ultradifferentiable mappings. Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), 6972. http://dx.doi.org/10.3792/pjaa.55.69 Google Scholar
[17] Malgrange, B., Id´eaux de fonctions diff´erentiables et division des distributions. Distributions, Ed. Ec. Polytech., Palaiseau, 2003, 121.Google Scholar
[18] Roumieu, C., Ultra-distributions d´efinies sur Rn et sur certaines classes de vari´et´es diff´erentiables. J. Analyse Math. 10(1962/1963), 153192. http://dx.doi.org/10.1007/BF02790307 Google Scholar
[19] Rolin, J.-P., Sanz, F., and Schäfke, R., Quasi-analytic solutions of analytic ordinary differential equations and o-minimal structures. Proc. London Math. Soc. 95 (2007), 413442. http://dx.doi.org/10.1112/plms/pdm016 Google Scholar
[20] Rolin, J.-P., Speissegger, P., and Wilkie, A. J., Quasianalytic Denjoy–Carleman classes and o-minimality. J. Amer. Math. Soc. 16 (2003), 751777. http://dx.doi.org/10.1090/S0894-0347-03-00427-2 Google Scholar
[21] Thilliez, V., On quasianalytic local rings. Expo. Math. 26 (2008), 123. http://dx.doi.org/10.1016/j.exmath.2007.04.001 Google Scholar