Abstract view
Cliquishness and Quasicontinuity of TwoVariable Maps


Published:20110708
Printed: Mar 2013
A. Bouziad,
Département de Mathématiques, Université de Rouen, UMR CNRS 6085, SaintÉtienneduRouvray, France
Abstract
We study the existence of continuity points for mappings
$f\colon X\times Y\to Z$ whose $x$sections $Y\ni y\to f(x,y)\in Z$ are
fragmentable and $y$sections $X\ni x\to f(x,y)\in Z$ are
quasicontinuous, where $X$ is a Baire space and $Z$
is a metric space. For the factor $Y$, we consider two
infinite ``pointpicking'' games $G_1(y)$ and $G_2(y)$ defined respectively
for each $y\in Y$ as follows: in the $n$th
inning, Player I gives a dense set $D_n\subset Y$, respectively, a dense open set $D_n\subset Y$. Then
Player II picks a point $y_n\in D_n$;
II wins if $y$ is in the closure of ${\{y_n:n\in\mathbb N\}}$, otherwise
I wins. It is shown that
(i) $f$ is
cliquish
if II has a winning strategy in $G_1(y)$ for every $y\in Y$, and (ii) $
f$ is quasicontinuous if
the $x$sections of $f$ are continuous and the set of $y\in Y$
such that II has a winning strategy in $G_2(y)$ is dense in $Y$. Item (i) extends substantially
a result of Debs and item (ii) indicates that
the problem of Talagrand on separately continuous maps has a positive answer for a wide
class of ``small'' compact spaces.
Keywords: 
cliquishness, fragmentability, joint continuity, pointpicking game, quasicontinuity, separate continuity, two variable maps
cliquishness, fragmentability, joint continuity, pointpicking game, quasicontinuity, separate continuity, two variable maps
